翻訳と辞書
Words near each other
・ Polar Challenge
・ Polar circle
・ Polar circle (geometry)
・ Polar Circle Marathon
・ Polar city
・ Polar class
・ Polar climate
・ Polar Club Glacier
・ Polar code
・ Polar code (coding theory)
・ Polar code (maritime)
・ Polar concept argument
・ Polar Conservation Organisation
・ Polar coordinate system
・ Polar Cup
Polar curve
・ Polar curve (aerodynamics)
・ Polar decomposition
・ Polar desert
・ Polar diagram
・ Polar distance
・ Polar distance (astronomy)
・ Polar drift
・ Polar easterlies
・ Polar ecology
・ Polar effect
・ Polar Electro
・ Polar Epsilon
・ Polar exploration
・ Polar Falcon


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Polar curve : ウィキペディア英語版
Polar curve

In algebraic geometry, the first polar, or simply polar of an algebraic plane curve ''C'' of degree ''n'' with respect to a point ''Q'' is an algebraic curve of degree ''n''−1 which contains every point of ''C'' whose tangent line passes through ''Q''. It is used to investigate the relationship between the curve and its dual, for example in the derivation of the Plücker formulas.
==Definition==
Let ''C'' be defined in homogeneous coordinates by ''f''(''x, y, z'') = 0 where ''f'' is a homogeneous polynomial of degree ''n'', and let the homogeneous coordinates of ''Q'' be (''a'', ''b'', ''c''). Define the operator
:\Delta_Q = a+b+c.
Then Δ''Q''''f'' is a homogeneous polynomial of degree ''n''−1 and Δ''Q''''f''(''x, y, z'') = 0 defines a curve of degree ''n''−1 called the ''first polar'' of ''C'' with respect of ''Q''.
If ''P''=(''p'', ''q'', ''r'') is a non-singular point on the curve ''C'' then the equation of the tangent at ''P'' is
:x(p, q, r)+y(p, q, r)+z(p, q, r)=0.
In particular, ''P'' is on the intersection of ''C'' and its first polar with respect to ''Q'' if and only if ''Q'' is on the tangent to ''C'' at ''P''. Note also that for a double point of ''C'', the partial derivatives of ''f'' are all 0 so the first polar contains these points as well.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Polar curve」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.